
Text S1

1 Community model parameterization

We utilize the generalized Lotka-Volterra (gLV) competition model framework and least-squares regression

in order to parameterize growth and interaction coefficients for four bacterial species using time series data

in line with other microbiome studies [1–5]. We define the gLV model

dNi(t)

dt
= riNi(t)−

n∑
j=1

βijNi(t)Nj(t) (S.1)

where Ni(t) is the density of species i at time t and ri is the corresponding maximal growth rate (ri > 0,

∀i = 1, ..., n). The interaction coefficients βi,j describe the per-capita inhibitory effect of species j on species

i. We assume competitive interactions, βij > 0, ∀i, j = 1, ..., n. For all models, we scale densities Ni by the

maximum density of species i for fitting and then adjust coefficients for this scaling after optimal parameters

have been selected.

1.1 Single species models

Initial fitting of single species maximal growth rates was done using single species optical density curves

(OD600) in time (hrs) calibrated to cfu/ml. Model fitting was done using least squares regression and the

logistic growth equation

dNi(t)

dt
= riNi(t)

(
1− Ni(t)

ki

)
(S.2)

which corresponds to the single species version of Equation S.1 where βii = ri/ki and ki describes the single

species carrying capacity. Fitting was done by solving the ordinary differential equation (ODE) defined in

Equation S.2 using ode45 in Matlab for Ñi(t) and iteratively minimizing the sum of squared errors (SSE),∑
(Ni − Ñi)

2, via the Levenberg-Marquardt algorithm. The maximal growth rates ri were then fixed from

these parameterizations for fitting all multi-species models.
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1.2 Multi-species models

In contrast to the single-species case where we fit the solution of the ODE, here we linearize the equations

for model fitting, using the mathematical definition d lnNi

dt = 1
Ni

dNi

dt , and fit the natural log derivative of

Ni(t), as is commonly done in microbiome modeling [1–3, 6, 7]. Rewriting Equation S.1 as

d lnNi

dt
= ri −

n∑
j=1

βijNj (S.3)

we approximate the natural log derivative of Ni using either the gradient function in Matlab or via spline

fitting [3]. From here we solve the least-squares problem iteratively minimizing the SSE between the data

approximated log derivative d lnNi

dt and the model calculated log derivative d ln Ñi

dt using the Levenberg-

Marquardt algorithm, and also via code from [3].

The resulting models were evaluated using the coefficient of determination,

R2 = 1−
∑M

i=1(yi − ŷi)
2∑M

i=1(yi − ȳi)2
(S.4)

where y is the data, ȳ is the mean of the data, ŷ is the model prediction, M is the total number of time

points. This gives us a metric of how well the model predicts the dynamics as compared to the mean of the

data. We select the parameterization that gives us the highest R2 (want R2 closest to 1). We note that low

or negative R2 values do not indicate that the model doesn’t fit the data, just that the mean of the data

points over time better captures the dynamics than the model fit.

We constrained parameters for multi-species model fitting in three different ways described below (Sections

1.2.1-3).

1.2.1 Pairwise data constrained

We initially fit multi-species models using a ‘bottom-up’ approach [6], where we fit all possible pairwise

interactions using co-culture experimental data for all pairs, and use the resulting interaction matrix B,

B =


β11 . . . β1n

...
. . .

...

βn1 . . . βnn



2



to predict the dynamics of 3- and 4-species communities (n = 3 and n = 4, respectively). For these fits,

single species growth rates ri were fixed from Section 1.1 and all interaction coefficients βi,j were left open.

This was done for (1) the WT strain of P. aeruginosa (PA14) without phage; (2) the WT strain of P.

aeruginosa (PA14) with phage where the phage dynamics are not explicitly tracked but implied by allowing

interaction coefficients to differ from the corresponding no phage case, (1); (3) the CRISPR-Cas knockout

strain (CRISPR-KO) of P. aeruginosa without phage; and (4) the CRISPR-Cas knockout strain (CRISPR-

KO) of P. aeruginosa with phage where again the phage dynamics are not explicitly tracked but implied by

allowing interaction coefficients to differ from the corresponding no phage case, (3). We define the resulting

full community interaction matrices: (1) BPA14, (2) BPA14,phage, (3) BCRISPR−KO, (4) BCRISPR−KO,phage.

Figure S6 depicts the model vs. data for the no phage case, when our growth and interaction terms are

derived from only 1- and 2-species experimental data.

1.2.2 Two- and three-species data constrained

We looked to improve the model accuracy by relaxing the dependence on solely pairwise data. To do this, we

followed the same procedure described above, but instead of fitting only all possible co-culture combinations,

we additionally fit all pairwise interaction coefficients βi,j for 3-species experimental data where only single

species growth rates ri were fixed and all interaction coefficients βi,j were left open. Here, we don’t explicitly

include higher order interactions (ex. βi,j,kNiNjNk), but by leaving the terms open in the 3-species case,

we can construct two different matrices B—one built from 2-species data B2sp and one built from 3-species

data B3sp. In the absence of higher order interactions, we would assume B2sp = B3sp. This is not the case

here, in line with our conclusions that the gLV model misses key components of the community and phage

dynamics observed experimentally.

We then constructed a new version of the B matrices in Section 1.2.1 by averaging the corresponding interac-

tion coefficients from the 3-species data fits (βi,j from fitting the gLV to data from experimental treatments:

PA+AB+SA, PA+BC+SA, and PA+BC+AB for PA14 and CRISPR-KO in the presence/absence of phage).

For example, if PA = N1 and AB = N2, any model for an experiment that includes PA and AB as 2 of

the 3 species will give us values for β1,1, β1,2, β2,1, and β2,2. We assume that by averaging these values

from multiple 3-species experiments, we can better capture a combination of implicit higher order interac-

tions (i.e. the average of β1,2 from PA+AB+SA and β1,2 from PA+BC+AB will approximate β1,2 in the

full 4-species community better than the value obtained from PA+AB co-culture data). In the absence of

phage, this matrix construction performs poorly for the WT strain, so we additionally include all pairwise
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data interaction terms from Section 1.2.1 in our averaging. For the CRISPR-KO strain without phage, this

combination produces the highest R2 value of all combinations tested. In the presence of phage, we note

that other ways of averaging parameters lead to different qualitative or quantitative model results (some

with slightly higher R2 values), but the general inability of the gLV model to capture the 4-species dynamics

from 2- and 3-species data in the presence of phage is consistent (R2 < 0). The chosen parameterization

captures the experimentally observed qualitative behavior of the community in the presence of phage (Fig S7).

Figures 9 and 10 show the results of this model parameterization and 4-species prediction, where interaction

coefficients corresponding to the WT PA14 case in Figure 9 are shown in Figure S8. Figure S7 shows the

corresponding long-time behavior of the models.

1.2.3 Four-species modeling

We also fit a model for the full 4-species community data where only single species growth rates ri were fixed

and all pairwise interaction coefficients βi,j were left open. Following from 3-species data fitting, we don’t

explicitly include higher order terms, but instead imply higher order interactions by allowing the pairwise

coefficients βi,j to be tuned to the full community data. This produced improved quantitative results in

some cases, but struggled with local minima and the number of open parameters in others.

1.2.4 Modeling phage impacts

We chose to model the impact of the phage implicitly in order to limit model complexity with respect to

functional forms and the number of parameters. Modelling the community in the absence of phage highlights

that the gLV model misses a number of complexities present in the community (i.e. higher order interac-

tions) that are critical for recapitulating the quantitative behavior of the community. Additionally, we find

that increasing the number of open parameters (such as in Section 1.2.3 above), leads to issues with local

minima given the resolution of our dataset. We briefly explored modeling phage dynamics explicitly, but we

found that increases in model complexity and parameter number further exacerbated issues we experienced

in the no phage case, without providing justified improvements in model predictive performance. Our use of

a simplified model (implicit phage effects and implicit higher-order interactions) allows us to predict qual-

itative community behavior in both the presence and absence of phage and illustrates the need for critical

evaluation of model forms used for quantifying microbiome dynamics in the future.
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1.3 Long time simulations

In order to assess long time behavior of the resulting 4-species community model, we simulated the parame-

terized Equation S.1 for 40 hrs for each experimental treatment (PA WT without phage, PA WT with phage,

PA CRISPR-KO without phage, PA CRISPR-KO with phage). These results are shown in Figure S7. We

use growth and interaction parameters from the two- and three-species data constrained model fitting (Sec-

tion 1.2.2, Fig 9, 10, and S8). Simulation was done using glv simulation.m from [3]. We choose the initial

population densities where P. aeruginosa is either (i) common, using the experimental initial conditions for

all species; or (ii) rare, using 103 cfu/ml as the initial density for P. aeruginosa and experimental initial

conditions for all other species. This variation in initial condition did not impact the qualitative outcome of

the simulations.

2 Competitive release of A. baumannii with phage predation

Here, we consider a model of 2-species competition between a focal and non-focal pathogen in the presence

of phage targeting the focal pathogen. We confirm that in the presence of phage, competitive release of the

non-focal pathogen will occur when it inhibits the focal pathogen.

We define a simple model of a two species P. aeruginosa (focal pathogen) and A. baumannii (non-focal

pathogen) competitive interaction plus phage, where only P. aeruginosa interacts with the phage. We define

the variables P = P (t) and A = A(t) to describe the densities in time of P. aeruginosa and A. baumannii,

respectively and denote the phage V . For simplicity and to isolate the effect of phage on qualitative outcomes

of two species competition between the alternate dominant species in the presence/absence of phage observed

experimentally, we don’t allow the phage density to change in time for this example. Following from Equation

S.1 and [8], we define the model,

dP

dt
= rpP − βppP

2 − βpaPA− cPV (S.5a)

dA

dt
= raA− βapAP − βaaA

2 (S.5b)

where the definitions for ri and βij (∀i, j = p, a) follow from Equation S.1 and c is the growth cost imposed

by the phage on P .

We can determine the equilibria (P ∗, A∗) of the system by setting dP
dt = 0 and dA

dt = 0 simultaneously. We
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focus on the case were we have equilibrium coexistence of P and A (P ∗, A∗ > 0), which occurs at

(P ∗, A∗) =

(
−(βpara − βaarp + βaacV )

βppβaa − βpaβap
,
βppra − βaprp + βapcV

βppβaa − βpaβap

)
(S.6)

Assuming that coexistence is stable (Section 2.1), we can define

∂P ∗

∂V
=

−cβaa

βppβaa − βpaβap
(S.7)

and

∂A∗

∂V
=

cβap

βppβaa − βpaβap
(S.8)

describing change in P ∗ and A∗ with change in the phage density. Following from [8], and given that the

two species exhibit a mutually inhibitory interaction, we can define a condition for competitive release of A.

baumannii by solving ∂A∗/∂V > 0, i.e. A∗ increasing with V increasing,

∂A∗

∂V
> 0 (S.9)

cβap

βppβaa − βpaβap
> 0

Given stability of the coexistence equilibrium (Section 2.1), we have βppβaa − βpaβap > 0, and the condition

for competitive release of A is,

cβap > 0 (S.10)

meaning that competitive release of A. baumannii will always occur when A inhibits P (βap > 0) as long as

there is an additional cost to P. aeruginosa due to the presence of phage (c > 0). This is consistent with

our results in the main text.

2.1 Constraints for stable coexistence

We define the constraints for stability of the coexistence equilibrium (Equation S.6), such that both popu-

lations are nonnegative for biological relevance (can’t have a negative population density).

First, we address biological relevance, finding the conditions for P ∗, A∗ > 0.

P ∗ =
−(βpara − βaarp + βaacV )

βppβaa − βpaβap
> 0
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and

A∗ =
βppra − βaprp + βapcV

βppβaa − βpaβap
> 0

We address two possible cases: (1) βppβaa − βpaβap > 0 and (2) βppβaa − βpaβap < 0.

Case 1. Given βppβaa − βpaβap > 0, we have

βpa

βaa
<

rp − cV

ra
for P ∗ > 0 (S.11)

and

βpp

βap
>

rp − cV

ra
for A∗ > 0 (S.12)

Finding the Jacobian of Equation S.5 and evaluating it at Equation S.6, Jcoexist, we evaluate tr(Jcoexist) < 0

and det(Jcoexist) > 0 for stability. Given our assumption that βppβaa − βpaβap > 0,

tr(Jcoexist) =
ra(βppβpa − βppβaa) + rp(βapβaa − βppβaa) + cV (βppβaa − βapβaa)

βppβaa − βpaβap
< 0 (S.13)

simplifies to the condition

rp − cV

ra
<

βpp(βaa − βpa)

βaa(βap − βpp)
if βap > βpp (S.14a)

rp − cV

ra
>

βpp(βaa − βpa)

βaa(βap − βpp)
if βap < βpp (S.14b)

Looking at the second stability condition, det(Jcoexist) > 0,

det(Jcoexist) =
−(βppra − βap(rp − cV ))(βpara − βaa(rp − cV ))

βppβaa − βpaβap
> 0 (S.15)

we find the condition is satisfied if we satisfy the conditions in Equations S.11 and S.12. Thus, for stability

of the coexistence equilibrium (Equation S.6) given βppβaa − βpaβap > 0, we must satisfy Equations S.11,

S.12, and S.14.

Case 2. Given βppβaa − βpaβap < 0, we have

βpa

βaa
>

rp − cV

ra
for P ∗ > 0 (S.16)
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and

βpp

βap
<

rp − cV

ra
for A∗ > 0 (S.17)

Using the same conditions for stability as defined above in Case 1, Equation S.13 simplifies to

rp − cV

ra
>

βpp(βaa − βpa)

βaa(βap − βpp)
if βap > βpp (S.18a)

rp − cV

ra
<

βpp(βaa − βpa)

βaa(βap − βpp)
if βap < βpp (S.18b)

Equation S.15 simplifies to either the condition

βpp

βap
>

rp − cV

ra
and

βpa

βaa
>

rp − cV

ra
(S.19a)

or the condition

βpp

βap
<

rp − cV

ra
and

βpa

βaa
<

rp − cV

ra
(S.19b)

neither of which are possible given the conditions on P ∗, A∗ > 0 defined by Equations S.16 and S.17. Thus,

in this case, nonnegative coexistence is never stable.
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